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Abstract

This article describes systematic errors encountered in vector network analysis and how they

can be mathematically corrected. The focus lies on the application to a unidirectional VNA,

i.e. where the 2-port device needs to be manually turned around to measure the full 2-port

S-matrix.

1 What does a VNA measure?

Figure 1 shows a very general and abstract model of a unidirectional vector network analyzer (VNA).
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Figure 1: Abstract model of a unidirectional VNA.

The signal power of a TX oscillator is fed into a reflection bridge or directional coupler, which can
be described as a linear 4-port device. Port 1 is connected to the oscillator, port 2 to the DUT, port
3 is the measured reflect signal r and port 4 is the measured reference signal n. Observe the wave
amplitude a1 travelling from the bridge to the DUT. This wave is partially reflected by the DUT
leading to the wave amplitude b1.
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1.1 Measuring 1-port reflection coefficients

The reflection coefficient S of the DUT input with its output terminated by ZL can be determined
from these wave amplitudes by equation 1.

S =
b1

a1

(1)

An ideal VNA would measure a1 as reference signal and b1 as reflect signal and calculate the reflection
coefficient S according to equation 1. Since the reflection bridge shown in figure 1 is a linear 4-port
device, the signals at any port can always be described as a linear combination of the wave amplitudes
a1 and b1. Thus, the reflect and reference signals are of the following form:

r = γa1 + δb1 (2)

n = αa1 + βb1 (3)

And the measurement result M is:

M =
r

n
=

γa1 + δb1

αa1 + βb1

(4)

By virtue of equation 1 we obtain the following result:

M =
γ + δS

α + βS
(5)

This function is called a Moebius 1 transform. It actually contains only 3 independent parameters
as one of {α, β, γ, δ} can be divided out. Thus, without loss of generality, M can be written in the
following way:

M =
S + a

bS + c
(6)

If the three parameters {a, b, c} are known, the input reflection coefficient S of the DUT can be
calculated from the measurement result M by inverting equation 6:

S =
a − cM

bM − 1
(7)

The determination of the parameters {a, b, c} is quite simple. It is just necessary to measure three
calibration standards with well known reflection coefficients, e.g. {SO, SS, SL}. Usually, but not
necessarily, an open a short and a load calibration standard are used. Measuring these, one obtains
the measurement results {MO,MS,ML}, where by virtue of equation 6:

MO =
SO + a

bSO + c
(8)

MS =
SS + a

bSS + c
(9)

ML =
SL + a

bSL + c
(10)

1August Ferdinand Moebius, 1790-1868, German mathematician and astronomer

2



These 3 equations for the 3 unknowns {a, b, c} can easily be solved:

a =
ML(MO − MS)

ML(MO + MS) − 2MOMS

(11)

b =
2ML − MO − MS

ML(MO + MS) − 2MOMS

(12)

c =
MO − MS

ML(MO + MS) − 2MOMS

(13)

Thus, using equation 7 together with the now known parameters {a, b, c}, we can determine the
reflection coefficient regardless of the details of the reflection bridge. Note, that also the output
impedance of the reflection bridge ZS is of no importance here.
How can we interpret the parameters {a, b, c}?
Equation 6 can be rewritten into the form

M =
S + a

c( b
c
S + 1)

(14)

The parameter a is closely related to what is called the directivity error [1]. If the gain of the reflect
signal or the reference signal changes, only c will change, that is why c is called a tracking error
[1]. To understand the meaning of the quotient b/c is not so simple. Let’s assume that deep inside
our reflection bridge there is an ideal reflection bridge with source impedance equal to the reference
impedance Z0, which is usually 50Ω. This impedance is transformed to the real port impedance ZS

by an error network described by an S-parameter matrix Eij. This is shown in figure 2. The real
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Figure 2: Real VNA bridge built up from an ideal VNA bridge and an error network.

bridge’s output impedance ZS corresponding to an output reflection coefficient

SS =
b2

a2

∣

∣

∣

∣

a1=0

= E22 (15)

Now, what would our VNA measure due to the error network if port 2 was terminated with an
impedance Z with corresponding reflection coefficient S? This is calculated in the Appendix A.1.
Using equation 64 and the abbreviation ∆E = E11E22 − E12E21 we obtain

M = Γin =
b1

a1

=
∆ES − E11

E22S − 1
(16)
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Dividing enumerator and denominator by ∆E we obtain

M =
S − E11

∆E

E22

∆E
S − 1

∆E

(17)

This is exactly of the same form as equation 6. By inspection we find

a = −
E11

∆E

(18)

b =
E22

∆E

(19)

c = −
1

∆E

(20)

Now we can calculate b/c:

b

c
=

E22

∆E

− 1
∆E

= −E22 (21)

And we finally find the real port 2 reflection coefficient SS corresponding to the output impedance
of the real bridge ZS:

SS = E22 = −
b

c
(22)

2 Measuring 2-port S-parameters

2.1 Reflection measurement

As we have seen above, the bridge output impedance is of no importance when measuring 1-port
reflection coefficients. This picture dramatically changes, when 2-port S-parameters are to be mea-
sured with the VNA depicted in figure 1. In the latter case, both impedances of the VNA, namely
the bridge output impedance ZS and the detector impedance ZL, both terminating the DUT, will
influence the measurement result M . This is quite obvious for the reflection measurements when
looking at equation 61 from the appendix and replacing S by SL. The input reflection coefficient of
our DUT in forward direction f is

Sf = S11 +
SLS12S21

1 − S22SL

(23)

If the detector impedance ZL is equal to the reference impedance Z0, which means SL = 0, equation
23 reduces to Sf = S11. Note, that in the general case Sf depends on all four S-parameters of the
DUT.
If we want to measure the output reflection coefficient in backward direction b by turning the DUT
around, we have to exchange indices 1 and 2 in equation 23:

Sb = S22 +
SLS21S12

1 − S11SL

(24)
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2.2 Transmission measurements

When doing a transmission measurement τ , one evaluates the quotient of the detector voltage udet

divided by the reference signal n. Here we assume udet to be normalized with respect to the reference
impedance Z0 like the reference signal n and the reflect signal r. Thus, udet can simply be written
in terms of wave amplitudes

udet = a2 + b2 = b2SL + b2 = b2(1 + SL) (25)

Thus the forward transmission signal reads

τf =
udet

n
=

b2(1 + SL)

αa1 + βb1

(26)

Using equation 59, we can replace b2:

τf =
(1 + SL)S21

1 − S22SL

·
a1

αa1 + βb1

(27)

The second quotient can be simplified to

a1

αa1 + βb1

=
1

α + β b1
a1

=
1

α + βSf

(28)

Next we want to normalize τf by a thru calibration measurement τThru. An ideal thru calibration
standard yields S11 = S22 = 0 and S12 = S21 = 1. Thus for the thru calibration measurement
equation 27 becomes

τThru = (1 + SL) ·
aT

αaT + βbT

=
1 + SL

α + β bT

aT

=
1 + SL

α + βSL

(29)

Note that the wave amplitudes depend on the DUT and are different in equation 29 from those in
equation 27. Now we can normalize the forward transmission signal dividing it by the thru calibration
measurement:

Tf =
τf

τThru

=

(1+SL)S21

1−S22SL
· 1

α+βSf

1+SL

α+βSL

=
S21

1 − S22SL

·
α + βSL

α + βSf

=
S21

1 − S22SL

·
1 + β

α
SL

1 + β

α
Sf

(30)

Note, that β/α = b/c = −SS as can be seen from equations 5, 6 and 22. Thus we find

Tf =
S21

1 − S22SL

·
1 − SSSL

1 − SSSf

(31)

We can find the backward thru response from this by swapping indices 1 and 2 and replacing subscript
f by b.

Tb =
S12

1 − S11SL

·
1 − SSSL

1 − SSSb

(32)

Now, we have a set of 4 measurement results Sf , Sb, Tf and Tb (equations 23, 24, 31, 32), which all
depend on all four S-parameters S11, S12, S21, S22 to be determined. Note that all parameters are
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known or can be measured, namely a, b, c and SS = −b/c are known from the reflect calibration and
SL can be measured with the reflect calibrated bridge during the thru calibration.
It remains to solve equations 23, 24, 31 and 32 for the unknown S-parameters S11, S12, S21, S22, so
the VNA can actually calculate the S-parameters from the measurement results.

2.3 Calculating the S-parameters from the measurement results

The following normalization steps are not straight forward but were made to bring my equations to
the same form as those published by Agilent [1]. In that course, my error terms can be compared to
Agilent’s notation.
First, the reflect measurements from equations 23 and 24 are rewritten. These reflection coefficients
can be transformed to the uncalibrated measurement results MF and MB by virtue of equation 6

Mf =
Sf + a

bSf + c
(33)

Mb =
Sb + a

bSb + c
(34)

Now we perform a renormalization:

M11 =
c2Mf − ac

c − ab
=

cSf

bSf + c
(35)

M22 =
c2Mb − ac

c − ab
=

cSb

bSb + c
(36)

We also renormalize the thru measurements Tf and Tb:

M21 =
Tf

1 − SSSL

(37)

M12 =
Tb

1 − SSSL

(38)

As can easily be seen2, solving these Mij for the desired S-parameters yields

2Remark of the author: after several pages of tedious calculations
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S11 =
M11(M22SS + 1) − M12M21SL

D
(39)

S21 =
M21(1 − M22(SL − SS))

D
(40)

S22 =
M22(M11SS + 1) − M12M21SL

D
(41)

S12 =
M12(1 − M11(SL − SS))

D
(42)

D = (SSM11 + 1)(SSM22 + 1) − S2
LM12M21 (43)

These equations are identical with those published in Agilent’s paper [1] on page 20 if the identifica-
tions described in appendix A.2 are applied.
Now, just for completeness, we can replace the Mij-terms through equations 35-38:

∆ = b2S2
L(SbSfTbTf − 1) + bcSL(SbSLTbTf + SfSLTbTf − 2) + c2(S2

LTbTf − 1) (44)

S11 =
b2SfSL(SbTbTf − SL) + bcSL(SbTbTf + Sf (TbTf − 2)) + c2(SLTbTf − Sf )

∆
(45)

S21 =
Tf (bSf + c)(bSL + c)(SbSL − 1)

∆
(46)

S22 =
b2SbSL(SfTbTf − SL) + bcSL(Sb(TbTf − 2) + SfTbTf ) + c2(SLTbTf − Sb)

∆
(47)

S12 =
Tb(bSb + c)(bSL + c)(SfSL − 1)

∆
(48)
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Assuming that the detector has an ideal match, i.e. SL = 0, these equations reduce to

S11 = Sf (49)

S21 = Tf (1 +
b

c
Sf )

= Tf (1 − SSSf ) (50)

= Tf

a · b − c

c(b · Mf − 1)

S22 = Sb (51)

S12 = Tb(1 +
b

c
Sb)

= Tb(1 − SSSb) (52)

= Tb

a · b − c

c(b · Mb − 1)

Note that in the last four equations equations the forward and backward directions are decoupled.
This might be a good alternative if only one signal direction can be measured and ZL is close to Z0.
Generally, ZL can be controlled more easily than ZS. Also note, that these decoupled equations still
compensate for a nonperfect bridge output impedance ZS.
An even better approximation for the transmission correction is the so called ”enhanced response
calibration” (ERC) [3]. It can be derived from equation 31 by setting S22 = 0.

S21 = Tf ·
1 − SSS11

1 − SSSL

(53)

By doing so, one suppresses multiple reflections between DUT output and detector input. This is a
good approximation for reasonably well matched DUTs. For highly mismatched DUTs this can still
be a good approximation, if the detector reflection coefficient SL is close to zero as was shown in the
previous approximation.

2.4 Isolation calibration

So far, we have only made use of 5 independent parameters in our calibration scheme, namely a, b, c,
SL and τThru in forward direction. The same 5 parameters are recycled for the backward direction.
So, we have used a total of calibration 10 parameters so far, which means 2 parameters are missing to
a 12-term error correction. The two missing parameters are the instrument isolation in forward and
backward direction. For the unidirectional VNA both are identical. As can be seen from Agilent’s
equations 74 and 76, the isolation measurement is simply subtracted from the thru measurement.
This is only an approximation. It does not take into account that the isolation may depend on the
terminations of the TX and RX ports. Still, it is useful if either the isolation is very good or if the
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dependencies on TX and RX port terminations are weak.

A Appendix

A.1 Relationship between input reflection coefficient and output termi-
nation of a 2-port
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S21 S12

S11 S22

two port device

2

2

0

0

a
S

b

Z Z

Z Z

Figure 3: Two-port device terminated with impedance Z.

The following relationship hold between the wave amplitudes shown in figure 3:

(

b1

b2

)

=

(

S11 S12

S21 S22

)

·

(

a1

a2

)

(54)

This can also be written as two scalar equations:

b1 = S11a1 + S12a2 (55)

b2 = S21a1 + S22a2 (56)

Since the wave b2 is reflected by the termination impedance Z with corresponding reflection coefficient
S, we can write:

S =
a2

b2

(57)

or by virtue of equation 56
b2 = S21a1 + S22Sb2 (58)

Solving for b2 we obtain

b2 =
S21a1

1 − SS22

(59)

Now we can calculate the input reflection coefficient for port 1 from equation 55:

Γin =
b1

a1

= S11 +
S12a2

a1

(60)

Inserting b2 from 56 leads to

Γin = S11 +
SS12S21

1 − S22S
(61)
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Bringing this to a common denominator

Γin =
(S11S22 − S12S21)S − S11

S22S − 1
(62)

and using an abbreviation for the determinant of the S-matrix

∆S = S11S22 − S12S21 (63)

we obtain the final result

Γin =
b1

a1

=
∆SS − S11

S22S − 1
(64)

A.2 Identifications of Agilent’s error terms

The error terms in [1] can be identified with ours.

A.2.1 Forward error terms

e11 = SS = −
b

c
(65)

e22 = SL (66)

e00 =
a

c
(67)

e10e01 =
1

c
−

ab

c2
(68)

Note that e10e32 is related to the thru calibration. It is effectively removed in our equations by
working with the renormalized Mij’s , see section A.2.3.

A.2.2 Backward error terms

e′11 = SL (69)

e′22 = SS = −
b

c
(70)

e′33 =
a

c
(71)

e′23e
′

32 =
1

c
−

ab

c2
(72)

Note that e′23e
′

01 is related to the thru calibration. It is effectively removed in our equations by
working with the renormalized Mij’s , see section A.2.3.
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A.2.3 Mij-Terms

S11M − e00

e10e01

= M11 =
c2Mf − ac

c − ab
=

cSf

bSf + c
(73)

S21M − e30

e10e32

= M21 =
Tf

1 − SSSL

(74)

S22M − e′33
e′23e

′

32

= M22 =
c2Mb − ac

c − ab
=

cSb

bSb + c
(75)

S12M − e′03
e′23e

′

01

= M12 =
Tb

1 − SSSL

(76)
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A.3 Comparison of notations

The following translation table is useful when comparing literature results from various sources.
HP notation [2] vs. Agilent notation [1] vs. my notation

Forward direction:

EDF = e00 =
a

c
(77)

ESF = e11 = SS (78)

ERF = e10e01 =
1

c
−

ab

c2
(79)

ELF = e22 = SL (80)

ETF = e10e32 = τThru · (1 − SSSL) (thru cal measurement) (81)

EXF = e30 (isolation) (82)

S21M = S21M = τf (83)

S11M = S11M = Mf (84)

(85)

Backward direction:

EDR = e′33 =
a

c
(86)

ESR = e′22 = SS (87)

ERR = e′23e
′

32 =
1

c
−

ab

c2
(88)

ELR = e′11 = SL (89)

ETR = e′23e
′

01 = τThru · (1 − SSSL) (thru cal measurement) (90)

EXR = e′03 (isolation) (91)

S12M = S12M = τb (92)

S22M = S22M = Mb (93)

(94)
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