
  QEX – Jan/Feb  2008   11 

A Low-Cost, 
Flexible USB Interface

No parallel port on your laptop PC? 
Use this interface and a USB port to control external devices.

Professor Dr Thomas C. Baier, DG8SAQ

University of Applied Sciences, Prittwitzstrasse 10, 89075 Ulm, Germany, baier@hs-ulm.de

1Notes appear on page 13.

After publication of my DDS-based, par-
allel-printer-port-controlled vector network 
analyzer, I have received a lot of requests 
asking to consider using the USB interface 
instead, since many modern notebook com-
puters don’t have a parallel printer port.1 This 
was motivation enough for me to look into 
how a USB interface could be realized in a 
simple and low cost way.

If special tasks are required, such as con-
trolling a VNA, a simple USB-to-parallel or 
USB-to-serial device won’t suffice. A micro-
controller will be necessary. There are many 
microcontrollers available on the market 
with built-in USB hardware, but generally 
these are more expensive than simple ones 
without USB support.

During an Internet search, I stumbled 
over a freeware firmware-only USB solution 
on the Objective Development Web site. This 
interface is realized with a low cost ATMEL 
AVR IC chip.2 After a couple of weeks of 
learning how to program AVRs, I could eas-
ily modify the  PowerSwitch reference exam-
ple given on the Objective Development Web 
site, to control a DDS and do other things. 

To me, there seem to be a multitude of 
possible Amateur Radio applications for this 
AVR-USB IC, but this solution doesn’t seem 
to be widely known among hams. Therefore 
I have decided to describe it here in a simple 
way.

Since I know little about USB ports, I 
don’t dare to write anything about USB 
theory. I would like to show, however, that 
even without knowing the intricacies of 
USB, such a device can easily be built and 
configured.

Hardware
The necessary hardware to control a 

DDS unit via USB is seen in Figure 1. The 
circuit consists of an ATMEL ATTiny2313 

Figure 1 — The schematic diagram of the USB interface shows the computer USB connector 
and an ATMEL ATTiny2313 IC. Only a few additional components are required to complete 

the circuit.

Figure 2 — This screen shot shows the Pony Prog menu with the correct “fuse” 
settings for the interface. Note the check marks in the BODLEVEL1 and SUT0 

boxes. 



12   QEX – Jan/Feb  2008

MCU and a 12 MHz crystal. The USB driver 
requires an MCU clock frequency of 12 
MHz. The latest driver version also allows 
a 16 MHz crystal clock, or on some devices, 
even 16.5 MHz derived from the internal RC 
oscillator. The MCU is powered from the 
USB hub. Diodes D1 and D2 are necessary to 
reduce the output voltage swing of the MCU 
at the USB D+ and D– lines to the USB 
specification limits. It is important to men-
tion that the hardware inside the MCU can be 
configured by programming so-called “fuse 
bits,” which define, for example, whether the 
internal RC oscillator or the external crystal 
is used. The AVR-USB device will not work 
with the factory fuse settings. The fuses need 
to be programmed as shown in Figure 2.

Figure 3 shows my USB interface with a 
DDS board and serial programming interface 
connected for PonyProg, described in the 
next section of the text.

Development Tools
Before an MCU can do its job, software 

needs to be written and transferred into the 
device. For all these tasks there are excel-
lent free software tools available. The soft-
ware package WinAVR is a powerful yet free 
software development platform for ATMEL 
AVR MCUs based on the well-known GNU 
GCC compiler for C and C++.3 I found 
that the older version, WinAVR-20060421, 
produces the smallest code size since the 
firmware was apparently optimized on 
that compiler version. AVR Studio 4 from 
ATMEL is a free integrated development 
environment for AVRs, including Assembler 
and a code simulator. In its latest version, 
C-code can be programmed and debugged 
from within AVR Studio through the usage 
of WinAVR as a plug-in.4 This makes the 
combination of WinAVR and AVR Studio 
very comfortable to use. Both are running 
on Microsoft’s Windows XP operating sys-
tem. All that is necessary to transfer the 
compiled code from the PC into the MCU 
flash memory is a cable connecting 4 lines 
of the parallel printer port with the MCU 
and the free software PonyProg, which can 
also be accessed as plug-in from within AVR 
Studio.5, 6 PonyProg can also program the 
AVR fuse bits.

Table 1 
Data Structure of a USB Data Transfer

Data	 Size	 Usage	 Access in usbFunctionSetup
request type	 1 Byte	 driver usage	 data[0]	 equ.	 rq->bmRequestType
request	 1 Byte	 user command	 data[1]	 equ.	 rq->bRequest
value 	 2 Bytes	 user data	 data[2] (lo), data[3] (hi)	 equ.	 rq-> wValue
index	 2 Bytes	 user data	 data[4] (lo), data[5] (hi)	 equ.	 rq->wIndex
length	 2 Bytes	 high byte ignored by driver	 data[6] (lo), data[7] (hi)	 equ.	 rq-> wLength
optional data payload	 length bytes	 user data	 see usbFunctionWrite

Firmware
The AVR USB firmware is partly written 

in Assembler for the time critical sections 
and in C for ease of interface to user code. 
The driver itself consumes about 1.4 kbytes 
of the 2 kbytes flash memory available in the 
selected MCU. This leaves about 600 bytes 
of space for user code. For larger user pro-
grams, it is helpful that all 8-bit AVR MCUs 
share the same CPU core, thus the driver can 
easily be adapted to any other AVR type, 
such as those with bigger flash memory.

Even though the USB specification and 
the firmware allow for several modes of data 
transfer, I have used only the simplest one, 
which is the so-called USB control transfer. 
It allows you to send or receive up to 254 
bytes of data in one shot, and it offers high 
priority on the host side (this is the PC side, 
as described later).

Table 1 shows the structure of the trans-
mitted data in a single USB control transfer. 
If only a few data bytes need to be transferred 
from the host to the USB device, the value 

and index words (2 bytes) can be used, and 
no data payload is needed, which means a 
length of 0.

Program Listing 1 shows my user inter-
face in the main.c program to the firmware 
driver.

As can be seen from the listing, depend-
ing on the request value, data[1], different 
user tasks are performed. The simplest task 
is the first one (ECHO value), which simply 
sends the two value bytes back to the PC. 
This function is useful for diagnostics only. 
The return value of the discussed function 
specifies the number of bytes (stored in reply-
Buf) to be answered back to the host machine 
on the control transfer. Obviously, the USB 
device implemented here can do much more 
than just control a DDS. It can write or read 
any of the MCU port pins, widening its usage 
even further, to other switching and control-
ling applications without firmware changes.

Request 5 is a special request, with return 
value 0xff, which instructs the driver that a 
data payload is available and the user func-
tion usbFunctionWrite is to be called. That 

Figure 3 — This photo shows the USB interface connected to a DDS board and 
serial programming interface.

DG8SAQ 



  QEX – Jan/Feb  2008   13 

codes, binaries and schematics can be down-
loaded from the author’s Web site.9 For those 
who prefer to download the files from the 
ARRL Web site, they are also available at 
www.arrl.org/qexfiles.10

Thanks to the following Lars Kvenild of 
Atmel Norway for excellent software support 
and to Christian Starkjohann of Objective 
Development for great forum support and for 
reviewing this article.

Notes
1Professor Dr Thomas C. Baier, DG8SAQ, “A Low 

Budget Vector Network Analyzer for AF to UHF,” 
QEX, Mar/Apr 2007, ARRL, pp 46-54. See also 
www.mydarc.de/DG8SAQ/VNWA/

2www.obdev.at/products/avrusb/
3http://sourceforge.net/projects/winavr/
4AVR Studio 4.13, build 528 (Release) from www.

atmel.no/beta_ware/
5s-huehn.de/elektronik/avr-prog/avr-prog.htm.
6www.lancos.com/
7libusb-win32.sourceforge.net/
8The LibUSB.pas header file was written and 

provided by Yvo Nelemans through private com-
munication. It can be downloaded from Objective 
Development’s Web page in the PowerSwitch 

function is shown in Program Listing 2.
Here, the data payload is received and 

sent without modification to the DDS chip. 
If the value is nonzero, a DDS data update 
pulse is issued. No DDS type specific code 
is implemented in the firmware, but the 
firmware supports any DDS type. For dif-
ferent types, only the data payload has to 
be adapted on the PC side. Also, the data 
doesn’t need to be sent in one chunk, but the 
DDS control word and data can be sent in 
separate control transfers.

Host Software
In order to enable a Windows PC to 

access the USB hardware, a device driver is 
necessary. Just like Objective Development’s 
reference example, I use the freeware 
LibUSB driver.7 It is also possible to use the 
HID driver integrated in Microsoft Windows 
XP if the USB device is configured as a 
Human Interface Device. Once the driver 
is installed and the device is plugged in, it 
can be accessed by means of any program-
ming language on the host PC side. Since 
my personal preference is Pascal, I have 
written the host software in Delphi. In order 
to access the interface from within Delphi, 
a LibUSB to Pascal headerfile is necessary. 
This describes the driver interface in a Pascal 
way.8 A considerable amount of Delphi cod-
ing is necessary to establish a connection to 
our USB device and to diagnose it. This part 
of the code is identical for any application, 
though, and can be reused. The only thing 
that needs to be adapted is the data transmit-
ted in the USB control transfer call. Program 
Listing 3 shows this section of the Pascal 
host code.

It displays the function call, which trans-
mits “len” bytes of data stored in “buffer” 
from the host PC to the USB device. The var-
iables “request,” “value” and “index” have 
the same meaning as discussed in Firmware 
section of this article. Varying these before 
the control transfer call will let the USB 
device do all kinds of desired jobs. The return 
value of the usb_control_msg function is the 
number of bytes answered back from the 
USB device in “buffer.” The control trans-
fer has high priority on the Windows host 
system, and requires about 5 ms in order to 
reach the USB device.

Summary
A simple, flexible and low cost USB 

hardware interface based on an Atmel 
AVR microcontroller and on Objective 
Development’s free firmware has been 
introduced in a hopefully instructive way. 
I hope this will enable readers who are not 
MCU programming specialists to customize 
the solution to their own needs. The source 

reference example. See Note 2.
9www.mydarc.de/dg8saq/AVR-USB/
10The program files associated with this article are 

available for download from the ARRL Web site. 
Go to www.arrl.org/qexfiles and look for the file 
1x08_Baier.zip. Be aware that the author and 
manufacturer’s Web sites may have updated list-
ings available for download.

  Professor Dr. Thomas Baier, MA, teaches 
physics, mathematics and electronics at 
the University of Applied Sciences in Ulm, 
Germany. Before his teaching assignment, 
he spent 10 years of work on research and 
development of surface acoustic wave filters 
for mobile communication with Siemens and 
EPCOS. He holds 10 patents.
  Tom, DG8SAQ, has been a licensed radio 
amateur since 1980. He prefers the soldering 
iron to the microphone, though. His interests 
span from microwave technology to microcon-
trollers. Lately, he has started Windows pro-
gramming with Delphi. Tom spent one year in 
Oregon USA rock climbing and working on his 
master’s degree.

See Program Listings starting on next 
page.



14   QEX – Jan/Feb  2008

Program Listing 1
The C function usbFunctionSetup in the main.c program listing is the user interface to the firmware driver.
USB_PUBLIC uchar usbFunctionSetup(uchar data[8])
{
usbRequest_t *rq = (void *)data;
static uchar    replyBuf[3];
    usbMsgPtr = replyBuf;
    if(rq->bRequest == 0){       		  // ECHO value
        replyBuf[0] = data[2];		  // rq->bRequest identical data[1]!
        replyBuf[1] = data[3];
        return 2;
    }
    if(rq->bRequest == 1){       		  // set port directions
        DDRA = data[2];
        DDRB = data[3];
        DDRD = data[4] & (~USBMASK & ~(1 << 2));// protect USB interface
        return 0;
    }
    if(rq->bRequest == 2){       		  // read ports 
        replyBuf[0] = PINA;
        replyBuf[1] = PINB;
        replyBuf[2] = PIND;
        return 3;
    }
    if(rq->bRequest == 3){       		  // read port states 
        replyBuf[0] = PORTA;
        replyBuf[1] = PORTB;
        replyBuf[2] = PORTD;
        return 3;
    }
    if(rq->bRequest == 4){       		  // set ports 
        PORTA = data[2];
        PORTB = data[3];
        PORTD = data[4];
        return 0;
    }
    if(rq->bRequest == 5){       		  // use usbFunctionWrite to transfer len bytes to DDS
        usb_val = data[2];			   // usb_val!=0 => DDS update pulse after data transfer
        return 0xff;
    }
    if(rq->bRequest == 6){       
        PORTB = PORTB | DDS_UPDATE;		  // issue update pulse to DDS
        PORTB = PORTB & ~DDS_UPDATE;
        return 0;
    }
    replyBuf[0] = 0xff;			   // return value 0xff => command not supported 
    return 1;
}

Program Listing 3
Issue a control transfer command in the out direction (USB_ENDPOINT_OUT) with the data payload stored in the 
buffer with length len bytes to be sent to the USB device. The variables “request,” “value” and “index” have the same 
meaning as discussed in the Firmware section.
usb_control_msg(handle, USB_TYPE_VENDOR or USB_RECIP_DEVICE or USB_ENDPOINT_OUT, request,
                                                               value, index, buffer, len, 5000);



  QEX – Jan/Feb  2008   15 

Program Listing 2
The usbFunctionWrite command in the main.c program listing sends the data payload directly to the DDS chip.
USB_PUBLIC uchar usbFunctionWrite(uchar *data, uchar len) //sends len bytes to DDS_SDA
{
uchar i;
uchar b;
uchar adr=0;
	 while (len!=0){
		  b=1;
		  for (i=0;i<8;i++){
			   if (b & data[adr]){
				    PORTB = (PORTB | DDS1_SDA) & ~DDS_SCL;
				    PORTB = PORTB | DDS_SCL;
			   }
			   else{
				    PORTB = PORTB & (~DDS1_SDA & ~DDS_SCL);
				    PORTB = PORTB | DDS_SCL;
			   }
			   b=b<<1;
		  }
	 len--;
	 adr++;
	 }
if (usb_val){
    PORTB = PORTB | DDS_UPDATE;		  // update DDS
    PORTB = PORTB & ~DDS_UPDATE;
    }
return 1;
}


